17 research outputs found

    Determining significance of pairwise co-occurrences of events in bursty sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event sequences where different types of events often occur close together arise, e.g., when studying potential transcription factor binding sites (TFBS, events) of certain transcription factors (TF, types) in a DNA sequence. These events tend to occur in bursts: in some genomic regions there are more genes and therefore potentially more binding sites, while in some, possibly very long regions, hardly any events occur. Also some types of events may occur in the sequence more often than others.</p> <p>Tendencies of co-occurrence of binding sites of two or more TFs are interesting, as they may imply a co-operative role between the TFs in regulatory processes. Determining a numerical value to summarize the tendency for co-occurrence between two TFs can be done in a number of ways. However, testing for the significance of such values should be done with respect to a relevant null model that takes into account the global sequence structure.</p> <p>Results</p> <p>We extend the existing techniques that have been considered for determining the significance of co-occurrence patterns between a pair of event types under different null models. These models range from very simple ones to more complex models that take the burstiness of sequences into account. We evaluate the models and techniques on synthetic event sequences, and on real data consisting of potential transcription factor binding sites.</p> <p>Conclusion</p> <p>We show that simple null models are poorly suited for bursty data, and they yield many false positives. More sophisticated models give better results in our experiments. We also demonstrate the effect of the window size, i.e., maximum co-occurrence distance, on the significance results.</p

    WordCluster: detecting clusters of DNA words and genomic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many <it>k-</it>mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds.</p> <p>Results</p> <p>We introduce here an algorithm to detect clusters of DNA words (<it>k-</it>mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used <it>WordCluster </it>to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome.</p> <p>Conclusions</p> <p><it>WordCluster </it>seems to predict biological meaningful clusters of DNA words (<it>k-</it>mers) and genomic entities. The implementation of the method into a web server is available at <url>http://bioinfo2.ugr.es/wordCluster/wordCluster.php</url> including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes.</p

    Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster

    Get PDF
    Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating.In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif.We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation

    Evolutionary Mirages: Selection on Binding Site Composition Creates the Illusion of Conserved Grammars in Drosophila Enhancers

    Get PDF
    The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Krüppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species) has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into question the common practice of inferring “cis-regulatory grammars” from the organization and evolutionary dynamics of developmental enhancers

    Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression

    Get PDF
    Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences

    Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

    Get PDF
    Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision

    The Gene Regulation Knowledge Commons: The action area of GREEKC

    Get PDF
    The COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various parts of the knowledge cycle that is central to understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to update and standardise existing knowledge management workflows, encourage new experimental approaches and thoroughly involve end-users in the process to design the Gene Regulation Knowledge Commons (GRKC). The GREEKC consortium describes its main achievements, contextualised in a state-of-the-art of current tools and resources that today represent the GRKC

    The gene regulation knowledge commons: the action area of GREEKC

    No full text
    As computational modeling becomes more essential to analyze and understand biological regulatory mechanisms, governance of the many databases and knowledge bases that support this domain is crucial to guarantee reliability and interoperability of resources. To address this, the COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various steps in the knowledge management process that focuses on understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to standardize and update existing knowledge management workflows and involve end-users in the process of designing the Gene Regulation Knowledge Commons (GRKC). Here the GREEKC consortium describes its main achievements in improving this GRKC
    corecore